12th ISCO Conference Beijing 2002

Investigation of Erosion Rates and Sediment Sources by Using 137 Cs Technique in the Loess Plateau of China

Zhang Xinbao^{1,2}, Feng Mingyi^{1,3} and Wen Anbang¹

¹ Chengdu Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, 610041

E-mail: Zxbao@imde.ac.cn

² Earth Environment Institute, Chinese Academy of Sciences

³ School of Territorial Management, Sichuan Normal College, 637002

Abstract: ¹³⁷Cs reference inventories ranged between 1,652—2,741Bq/m² (1993s' level), and had a tendency to increase from northwest to southeast as annual precipitation increase in the Loess Plateau. The average ¹³⁷Cs inventories on cultivated slopes (19°—29°) ranged from 557.2 Bq/m² to 1,068.0 Bq/m² which accounted for 21.94% and 42.05% of the local ¹³⁷Cs reference inventory, respectively, and corresponding erosion rates ranged from 8,409.4 t/(km² • yr) and 4,856.6 t/(km² • yr), respectively. The average ¹³⁷Cs inventories on steep grass and forest slopes (24.1°—43.5°) ranged from 1,770 Bq/m² to 2,310Bq/m² which accounted for 68.0 % and 88.9 % of the local ¹³⁷Cs reference inventory, respectively, and corresponding erosion rates ranged from 136 t/(km² • yr) to328 t/(km² • yr). It was apparent that soil erosion was severe on cultivated slopes and slight on the forest and grass slopes. More than 70% of sediment in rivers comes from the gully area in the Loess Plateau region although soil erosion is severe on the cultivated slopes in the inter-gully area.

Keywords: ¹³⁷Cs, erosion rates, sediment sources, loess plateau

1 Introduction

The Yellow River is well known for its extremely high suspended sediment load, which is reported to be of the order of 1.6×10^9 t/yr and therefore accounts for nearly 10 percent of the total annual sediment flux of the world's rivers to the oceans (Walling and Webb, 1987). Most of the sediment transported by the lower Yellow River originates from the Loess Plateau region, which is located in the middle reaches of the river basin. The dominant landforms of the plateau are rolling hills (rolling plateau) or high plains (high plain plateau) dissected by deep gullies. Soil erosion is very severe throughout the region. Sheet and rill erosion is severe on cultivated slopes, which are extensively distributed over the plateau. Gully erosion and active mass movements predominate in the gully areas. Since the 1960s, an extensive program of soil conservation and sediment control measures has been carried out over the plateau, and this has been associated with a significant reduction in the sediment load of the Lower Yellow River since 1970(Mou, 1991). In order to evaluate the precise impact of the various soils conservation and sediment control measures on sediment delivery there is a need for an improved understanding of the erosion behavior of the plateau.

Classic methods to monitor soil losses on slopes and sediment loads in rivers such as runoff plot and hydrological monitoring station has been used over the plateau. Those methods are costly and can not solve all scientific questions of erosion and sedimentation in the plateau(Campell *et al.*,1988). The Loess Plateau is the first region to use the ¹³⁷Cs technique to study soil erosion and sedimentation in China in 1986, because the loess soil has a fine and uniform texture (Zhang *et al.*, 1987). Since then, studies have been carried out over the plateau. This paper reports the achievements in using the ¹³⁷Cs technique to investigate soil erosion rates and sediment sources in the plateau.

2 Basis of the ¹³⁷Cs technique

¹³⁷Cs is an artificial radionuclide with a half-life of 30.17 years which released into the environment as a result of atmospheric testing of thermo-nuclear weapons primarily during the period from 1954-mid-

1970s. ¹³⁷Cs fallout is strongly and rapidly adsorbed by fine particles in the surface horizons of the soil, when it falls down on the ground mostly with precipitation. Subsequent redistribution of the radiocaesium reflects the movement of soil particles since the ¹³⁷Cs moves in association with the soil particles(Quine.1989). ¹³⁷Cs is concentrated in the upper horizons of few centimeters in depth and declines rapidly, and the maximum ¹³⁷Cs distribution depth is less than 20 cm under uncultivated land where soil is undisturbed. It is quite evenly distributed to plough depth (15cm-25cm) under cultivated land, where tillage mixes the ¹³⁷Cs fallout with plough soils. ¹³⁷Cs distribution depths in profile on accumulative sites are greater than at no accumulation sites . If it is assumed that the initial distribution of the ¹³⁷Cs fallout input was uniform then deviations in the measured distribution of ¹³⁷Cs from local fallout inventory represent the net impact of soil redistribution during the period since ¹³⁷Cs deposition. It will be possible to estimate rates of soil erosion and accumulation from ¹³⁷Cs measurements, if a relationship between ¹³⁷Cs loss and gain and soil loss and gain can be established. The sediments delivered from the inter-gully area, where the land has been extensively cultivated, contain a considerable amount of ¹³⁷Cs, while those delivered from the gully area, where gully erosion and active mass movements are predominated, contain no or very little ¹³⁷Cs, in the Loess Plateau. By comparison of the ¹³⁷Cs contents between the plough soil of cultivated slopes in the inter-gully area, and the products of gully erosion and mass movements in the gully area, and the suspended sediment of floods or deposited sediment in reservoirs, in a watershed, the relative contributions from the inter-gully area and the gully area can be estimated.

3 137Cs reference inventory distribution over the plateau

Flat grassland is usually selected as a ¹³⁷Cs-reference site in other countries(Quine.1989). But, such grassland is difficult to be found in the Loess Plateau. We also selected a large flat cultivated field as a ¹³⁷Cs-reference site, if no flat grassland could be found in a study area, ¹³⁷Cs reference inventories ranged between 1,652—2,741Bq/m² (1993s' level), and had a tendency to increase from northwest to southeast as annual precipitation increased .

4 Estimating soil losses from ¹³⁷Cs measurements

4.1 Cultivated land

The soil loss at a point of a cultivated land was calculated by using the simplified mass balance model (Zhang *et al.*,1990):

$$A = A_0 (1 - \Delta H / H)^{N-1963} \tag{1}$$

where: A= the ¹³⁷Cs inventory (Bq/kg); $A_0=$ the local ¹³⁷Cs reference inventory; $\Delta H=$ annual soil loss in depth (cm); H= plough soil depth (cm).

The calculated erosion rate using the above model from the ¹³⁷Cs inventory at a point on a cultivated slope represents the combination of soil losses by water erosion and tillage at the point. The average water erosion rate over a field of a cultivated slopes should be calculated from the area-weighted mean ¹³⁷Cs inventory, because tillage redistributed the soil within the field and only water erosion removes soil out of the field.

Investigation of erosion rates on cultivated slopes by using the 137 Cs technique had been carried out at seven study sites over the plateau. Water erosion rates on cultivated slopes derived from the 137 Cs measurements at the Ansai study site, where sampling was undertaken in 1992, are shown in Table 1. The local 137 Cs reference inventory was 2,540 Bq/m². The average 137 Cs inventories over a field ranged from 557.2 Bq/m² to 1,068.0 Bq/m², which accounted for 21.94% and 42.05% of the local 137 Cs reference inventory, respectively. The erosion rates, estimated by using the above formula ($\gamma = 1.1$ g/cm³, H = 15 cm), ranged from 8,409.4 t/(km² • yr) and 4,856.6 t/(km² • yr). It was apparent that the steeper the cultivated slopes, the higher the erosion rates. In general, the soil erosion rates from the 137 Cs measurements were close to the rates predicted by using the local empirical relationships developed from the runoff plot data. But the rates derived from the 137 Cs measurements were considerably higher than the predicted values of the empirical relationships if the slope length was more than 50 m. This is because the

soil loss is predominately caused by rill erosion on a cultivated slope and rill erosion is not getting severe if slope length is greater than 50 m. Most of rills reach the plough pan layer during a heavy storm, But the local empirical relationships were developed from the data of runoff plots of less 40m.

Table 1 Erosion rates on cultivated slopes derived from ¹³⁷Cs measurements at Ansai site

Field		1	2	3	4	
Total slope	Slope length(m) Slope gradient(°) Average ¹³⁷ Cs inventory(Bq/m²) Erosion rates (t/(km² • yr))	49.23 23.98 705.2 7,132.1	77.13 19.11 771.0 6,646.7	62.29 28.94 557.2 8,409.4	88.82 11.21 1,068.0 4,856.6	
Gentle hill top	Slope length(m) Slope gradient(°) Average ¹³⁷ Cs inventory(Bq/m²) Erosion rates (t/(km² • yr))	16.31 5.40 1,164.1 4,379.7	21.73 8.35 937.6 5,570.5	14.97 14.49 617.6	15.97 1.68 21,423.9 3,260.0	
Steep hill slope	Slope length(m) Slope gradient(°) Average ¹³⁷ Cs inventory(Bq/m²) Erosion rates (t/(km² • yr))	30.02 30.04 548.7 8,491.8	55.40 22.96 713.5 7,068.8	47.32 31.87 669.7 7,412.6	72.85 12.73 1,002.4 5,206.6	

4.2 Uncultivated land

The soil loss at a point of uncultivated land was calculated by using the following equation (Zhang *et al.*, 1990):

$$A = A_0 e^{-\lambda h} \tag{2}$$

where: A= the 137 Cs inventory at a point (Bq/m²), $A_0=$ the local 137 Cs reference inventory (Bq/m²), $\lambda=$ coefficient(cm⁻¹), h= depth (cm). Investigation of erosion rates on uncultivated slopes by using the 137 Cs technique have been carried out at five study sites over the plateau. Water erosion rates on uncultivated slopes derived from the 137 Cs measurements at the Xifeng study site, where sampling was undertaken in 1993, are shown in Table 2. The local 137 Cs reference inventory was 2,600 Bq/m². The average 137 Cs inventories on grass and forest slopes ranged from 1,770 Bq/m² to 2,310 Bq/m², which accounted for 68.0% and 88.9% of the local 137 Cs reference inventory, respectively. The erosion rates, estimated by using the above formula ($\gamma=1.21$ g/cm³, $\lambda=0.23$ cm⁻¹), ranged from 136 t/(km² • yr).

Table 2 Erosion rate derived from ¹³⁷Cs measurements on uncultivated slopes at Xifeng study site

Field	Vegetation	Slope length (m)	Slope gradient(°)	137Cs ineventory (Bq/m²)	Erosion rate(t/(km² • yr))
1	Grass	23.0	24.1	2,350	167
2	Grass	96.3	38.8	2,000	237
3	Grass	75.0	31.8	2,150	159
4	Grass	31.4	37.0	2,210	136
5	Grass	36.5	33.6	1,950	243
6	Forest	38.5	34.8	1,770	328
7	Forest	29.0	43.5	2,140	163
8	Bare slope	30.0	45.0	60	3,267

to 328 t/(km² • yr). It was apparent that soil erosion was limited on the forest and grass slopes although the slopes were very steep (24.1°—43.5°). In contrast, the average 137 Cs inventories on the bare slope was very low, 60 Bq/m², only accounted for 2.3% of the local 137 Cs reference inventories, the corresponding erosion rate was very high, 3,267 t/(km² • yr) (Zhang, *et al.*, 1994).

The studies carried out at other sites had similar results as at the Xifeng site. It was apparent that slope gradients had little effects on erosion rates on uncultivated slopes under good vegetation coverage and the vegetation coverage was the key factor to the soil erosion on uncultivated slopes in the Loess Plateau.

5 Sediment sources

The plough soils of cultivated slopes with a certain ¹³⁷Cs content in the inter-gully area and the products of gully erosion and mass movements in the gully area with little ¹³⁷Cs are major sediment sources in the Loess Plateau. It has been suggested that the sediment delivery ratio be close to 1(Jing, *et al.*,1997). The relative contributions of the suspended sediments of the rivers and the deposited sediments in sediment trapping reservoirs from the two areas can be determined by using the simple mixing model:

$$C_d = C_m \quad f_m + C_g \quad f_g \tag{3}$$

$$f_m + f_\varrho = 1 \tag{4}$$

Where: C_d = the ¹³⁷Cs content of suspended sediment or deposited sediment (Bq/kg); C_m = the ¹³⁷Cs content of the plough soil in the inter-gully area(Bq/kg); f_m = the relative contribution of the sediment from the inter-gully area (%); C_g = the ¹³⁷Cs content of the products of gully erosion and mass movements (Bq/kg); f_g = the relative contribution of the sediment from the gully area (%).

Detailed studies of the relative contributions of deposited sediments from the inter-gully area and gully area were undertaken in five small watersheds with a drainage area of 0.21km²—2.63km² in the rolling plateau. The 137Cs contents of plough soils on cultivated slopes in the inter-gully area varied between 1.6Bq/kg—9.5 Bq/kg (n=232) in the six watersheds. The ¹³⁷Cs contents ranged from 3.72 Bq/kg to 9.50 Bq/kg with a mean value of 5.70Bq/kg for the relatively gentle slopes of <15° (n=113), from 2.60Bq/kg to 3.98Bq/kg with a mean value of 3.41bq/kg for the relative steep slopes, and from 1.60 Bq/kg to2.30Bq/kg with a mean value of 2.01Bq/kg for the steep slopes. The plough soils for a certain gradient of the cultivated slopes had no significant differences in ¹³⁷Cs contents among the watersheds. The average ¹³⁷Cs content of the products of gully erosion and mass movements in the gully area were 0.02 Bq/kg in the Zhaojia Gully and no ¹³⁷Cs was detected in the surface soils on steep gully walls in the Yangdao Gully (Zhang, *et al.*,1989,1997). The ¹³⁷Cs contents of the deposited sediments in the sediment trapping reservoirs in the five watersheds varied between 0.58 Bq/kg-1.15 Bq/kg. By analysis of the erosion severities and area ratios of the above three types of the slopes to the total area of the inter-gully area, the average ¹³⁷Cs contents of plough soils on the relative steep slopes were used to calculate the relative contributions of sediment in a watershed. By using the mixing model, the relative contributions of sediment from the gully area ranged from 67% to 80% for the four watersheds in the eastern rolling plateau and 83% for the Qiaozixi Gully in the western rolling plateau.

Table 3 The ¹³⁷Cs contents of deposited and suspended sediments and relative contribution of the sediment from the gully area in the Loess Plateau

Watershed	Zhaojia Gully	Majia Gully		Yuejia Gully	Qiaozixi Gully	River	Yellow River (Longmen)	Qingjian River (Zichang)	Qingjian River (Yanchuan)	Tuwei River (Gao jianpu)	Tuwei River (Gaojia chuan)	Fenhe River (Hejing)
Drainage area (km²)	2.63	0.84	0.21	1.70	1.09	433,514	497,552	913	3,468	2,095	3,253	38,728
of sediment (Bq/kg)	0.91	1.15	0.74	0.78	0.58	0.40	1.14	0.74	0.55	0.75	0.48	1.09
Relative contribution of sediment from gully area (%)	73	64	78	77	83	88	67	78	84	78	86	68

Suspended sediment samples were collected at two hydrological stations on the Yellow River and at five stations on its big tributaries in 1993 and 1994(Jing, et al., 1997). Three floods sampled at the stations represent the range in magnitude for the year from small to large. The 137Cs contents of the suspended sediment samples ranged from 0 to 2.7Bq/kg and the arithmetic mean content of the samples at each station ranged from 0.40 Bq/kg to 1.14 Bg/kg. The average ¹³⁷Cs content of the suspended sediment samples at the Wupu Station on the upstream of the Middle Yellow River had the lowest value of 0.40 Bq/kg, while it had the highest value of 1.14 Bq/kg at the Longmen Station on the downstream of the river among the seven stations. The ¹³⁷Cs contents of the suspended sediments of the five tributaries ranged from 0.55 Bq/kg to 1.09 Bq/kg. Those values were close to the deposited sediments in the sediment trapping reservoirs. The 137Cs contents of the suspended sediments and deposited sediments had a tendency to decrease from the north to the south in the Hekouzhen-Longmen basin. It implied that gully erosion became slight from the north to the south in the basin. The relative contributions of the suspended sediments in the floods at the seven stations from the gully area were estimated between 67% and 88% (C_m =3.41 Bq/kg, C_g = 0.02 Bq/kg). By synthetic analyses of the relative contributions of sediment from the gully area from this and other studies with the erosion environment conditions, the relative importance of the sediment from gully area in the Middle Yellow River Basin can be drawn as following: more than 70% of the sediments comes from the gully area in most of the basin except in the Fenhe River and Weihe River Valley regions. More than 85% of sediment came from the gully area in the high plain plateau and Shaanxi-Shanxi Gorge region of the Yellow River.

6 Conclusions

- (1) The ¹³⁷Cs technique has a great potential for investigation of erosion rates and sediment sources in the Loess Plateau and the fine and uniform texture of the loess soil is favourable for the technique.
- (2) More than 70% of sediment in rivers comes from the gully area in the Loess Plateau region although soil erosion is severe on the cultivated slopes in the inter-gully area.
- (3) Erosion rates derived from ¹³⁷Cs measurements are close to the rates predicted by using the local empirical relationships developed from the runoff plot data.
- (4) Soil erosion is very slight on steep slopes under good vegetation coverage and very severe on steep bare slopes.

References

- Campell,B.L.,Loughran,R.J. and Elliott,G.L.,1988:A method for determing sediment budgets using caesium-137.In:Boroas,M.P. and Walling,D.E.(eds.):Sediment Budgets(Proc.Porto Allegre Symp.,December 1988).IAHS Publication No.**174**(591p.):171-180.
- Jing, K., Lu, J.F., Liang, J.Y. and Zhang, X.B. Characteristics and changes of soil erosion environment in the Middle Yellow River Basin. Huanghe Water Resources Publication House (in Chinese). 109-137, 1997.
- Mou,J.1991. The impact of environmental change and conservation measures on erosion and sediment loads in the Yellow River basin,pp.47-52 in N.E.Peters and D.E.Walling (eds.): Sediment and Stream Water Quality in a Changing Environment: *Trends and Explanation. Proceedings of the Vienna Symposium*, August 1991. IAHS Publication No.203.
- Quine, T.A., 1989: Use of a simple model to estimate rates of soil erosion from caesium-137 data. Journal of Water Resources, 8:54-81.
- Walling, D.E. and Webb, B.W. 1987. Material transport by the world's rivers: evolving perspectives', pp.313-329 in J.C. Rodda and N.C. Matalas (eds.) Water for the Future: Hydrology in Perspective. Proceedings of the Rome Symposioum, April 1987. IAHS Publication No.164.
- Zhang.X. et al. 1989.Use of Caesium-137 measurements to investigate erosion and sediment sources within a small drainage basin in the Loess Plateau of China, Hydrological Processes, vol.3, 317-323.
- Zhang, X., Higgitt, D.L. and Walling D.E.1990.A preliminary assessment of the potential for using caesium-137 to estimate rates of soil erosion in the loess plateau of China. *Hydrological Sciences Journal*, 35,243-251.

- Zhang, X., Quine, T.A., Walling, D.E.and Li, Z.1994. Application of the caesium-137 technique in a study of soil erosion on gully slopes in a yuan area of the loess plateau near Xifeng, Gansu Province, Chian, *Goegrafiska Annaler, Ser.A, Physical Geography*, **76**A, 103-120.
- .Zhang, X, Walling.D.E, Quine.T.A. and Wen.A: 1997. Use of reservoir deposits and caesium-137 measurements to investigate the erosional response of a small drainage basin in the rolling loess plateau region of China. *Land degradation and development* (8), 1-16.